Anomalies of the Fetal Heart

Alfred Abuhamad, MD.
Eastern Virginia Medical School
Abnormal Cardiac Chambers

- Ebstein anomaly
- Tricuspid atresia
- Cardiac tumors
Anomalies of the Outflow Tracts

- Tetralogy of Fallot
- Common Arterial Trunk
- Double Outlet Right Ventricle
Ebstein Anomaly
Ebstein Anomaly

- Apical displacement of septal and posterior leaflets of tricuspid valve
- Part of right ventricle (RV) is atrialized
- Dysplastic tricuspid valve
- Severe tricuspid regurgitation

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Ebstein Anomaly

- Wide spectrum
- Minor form to severe form
- Associated anomalies:
 - Pulmonary stenosis or atresia
 - VSD
 - ASD
Ebstein Anomaly

Spectrum of Disease
Ebstein Anomaly

Ultrasound Findings

• Enlarged heart
• Dilated RA
• Attachment of TV septal leaflet to RV wall (essential for diagnosis)
• Paradoxic septal movement
• RV outflow obstruction
Cardio-thoracic Ratio

Ebstein Anomaly

- 0.6 associated with pulmonary hypoplasia
Ebstein Anomaly
Ebstein Anomaly
Ebstein Anomaly

Ultrasound Findings

• Holosystolic TR
• Jet originates deep in RV
• PSV > 175 cm/sec
Ebstein Anomaly

Color Doppler
Ebstein Anomaly
Ebstein Anomaly
Ebstein Anomaly
Ebstein Anomaly

Pulsed Doppler
Ebstein Anomaly

Early Gestation
Ebstein Anomaly

Associated Anomalies

• RV outflow obstruction in 60%
• ASD in ~ 60%
• SVT common post repair
• Most are isolated

Br Heart J 1974;36:417–427
Ebstein Anomaly

Poor Prognostic Factors (fetus)

- Massive Cardiomegaly
- Decreased RV outflow
- Fetal hydrops
Outcome (fetal series):

- 45% dying in utero
- Overall 80-90% mortality

Tricuspid Atresia
Tricuspid Atresia

- Absence of a right atrioventricular connection
- Diminutive right ventricle (RV)
- Widely patent foramen ovale
- Ventricular septal defect (VSD)
- Right ventricular outflow obstruction

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Tricuspid Atresia

- Inlet-type VSD always present
- Size of RV is related to size of VSD
- Widely patent foramen ovale or ASD
- Flow to RV thru VSD in late diastole
Tricuspid Atresia

Ultrasound Findings

- Small RV, normal contractility
- No RV myocardial thickening
- Thickened echogenic TV
- Slightly dilated RA
- Large foramen ovale
- Malaligned atrial and ventricular septae
Tricuspid Atresia
Tricuspid Atresia
Tricuspid Atresia
Tricuspid Atresia
Tricuspid Atresia

<table>
<thead>
<tr>
<th>Type</th>
<th>Prevalence</th>
<th>Great arteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>70 – 80 %</td>
<td>Normal</td>
</tr>
<tr>
<td>Type 2</td>
<td>12 – 25 %</td>
<td>D-Transposition</td>
</tr>
<tr>
<td>Type 3</td>
<td>Rare</td>
<td>CAT, L-Transposition</td>
</tr>
</tbody>
</table>
Cardiac Tumors
Cardiac Tumors

- Rhabdomyomas (80-90%)
- Teratomas
- Fibromas
- Myxomas
- Rhabdomyosarcomas
- Hamartomas
- Others
Rhabdomyomas
Rhabdomyomas
Rhabdomyomas
Rhabdomyomas
Tuberous Sclerosis
Tetralogy of Fallot

Subaortic malaligned VSD

Overriding dilated aortic root

Narrow stenotic PA

RV hypertrophy is not present in fetus

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Tetralogy of Fallot

- Incidence ~ 1 in 3600 live births
- Accounts for 3-7 % of infants with CHD
Tetralogy of Fallot

- Classic form (~ 80 %)
- Pulmonary atresia with VSD
- Absent pulmonary valve
Tetralogy of Fallot

Ultrasound Findings:

- Four chamber view normal
- Left axis deviation
Tetralogy of Fallot

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Tetralogy of Fallot
Tetralogy of Fallot

Ultrasound Findings:

- Five chamber view abnormal
- Aortic dextroposition
- Dilated aortic root (3rd trimester)
- Perimembranous subaortic VSD
- Infundibular pulmonary stenosis
Tetralogy of Fallot

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Tetralogy of Fallot
Tetralogy of Fallot

5-Chamber View
Tetralogy of Fallot
Tetralogy of Fallot
Tetralogy of Fallot

A Normal

B TOF
Tetralogy of Fallot

5-Chamber View

3-Vessel View

LV, RV, AO, VSD, PA, AO, RV, RA
Tetralogy of Fallot
Tetralogy of Fallot

3-Vessel Trachea View
Tetralogy of Fallot - PA

3-Vessel Trachea View
Tetralogy of Fallot

STIC – TUI in Color Doppler
Tetralogy of Fallot

STIC-Glass Body in Color Doppler
Tetralogy of Fallot

Common Associated Cardiac Anomalies

- Patent foramen ovale/ ASD in 85%
- Right sided Aortic arch in 25%
- Persistent LSVC in 11%
Tetralogy of Fallot

Rare Associated Cardiac Anomalies

- Atrioventricular canal defect in < 5%
- Abnormal coronary circulation in < 5%
- Anomalous pulmonary venous connections in < 1%
Tetralogy of Fallot

Associated Extracardiac Anomalies

• Chromosomal abnormalities in 30%
• Anomalies of anatomic organs, common
• Deletion 22q11 in 10-15%
 • Right Aortic arch
 • Thymic hypopgenesis / agenesis
• Extracardiac anomalies
• Polyhydramnios
Poor Prognostic Factors

- Decelerated growth of the PA
- Accelerated growth of the Ao
- Cessation of forward flow in PA
- Reversed flow in DA
- TOF with pulmonary atresia
- Absent pulmonary valve
- Associated chromosomal anomalies
- Associated extracardiac anomalies
- Small LV
- Associated abnormal venous connections
Common Arterial Trunk (CAT)

- Ventricular septal defect
- Single arterial trunk (CAT)
- PA originates from CAT
- Absent ductus arteriosus

CAT gives rise to systemic, coronary and pulmonary circulations

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Common Arterial Trunk

- Incidence ~ 1.6 % of newborns with CHD
- Occur in 1.07 of 10,000 live births
- More common in fetuses of diabetic mothers
Common Arterial Trunk

- Truncus arteriosus
- Truncus arteriosus communis
- Aorticopulmonary trunk

Classification is based upon origin of pulmonary arteries
Common Arterial Trunk

- Type 1: Main PA arises from CAT (A1)
- Type 2: Direct origin of RPA and LPA from CAT, close anatomically (A2)
- Type 3: Direct origin of RPA and LPA from CAT, distant anatomically (A2)
- Type 4: RPA and LPA arise from aortic arch or descending aorta (PA with VSD)

A3: single PA – A4: Aortic arch abnormalities

Collet & Edwards 1949 – Van Praagh 1965
Common Arterial Trunk

CAT Type A4

Van Praagh & Van Praagh, 1965
Common Arterial Trunk

Origin of CAT

• Biventricular origin in 2/3 of cases
• RV origin in 1/3 of cases
• LV origin in rare cases
Common Arterial Trunk

Valves of CAT

- Three leaflets in 69%
- Four leaflets in 22%
- Two leaflets in 9%
- Five, six or more in rare cases

Thickened with regurgitation and occasional stenosis
Common Arterial Trunk

- Four chamber view normal
- Cardiac levorotation
- Five chamber view abnormal
- Overriding large vessel
- Thickened dysplastic valves
- Absent PA from RV
Common Arterial Trunk

Identifying origin of PA from the CAT confirms the diagnosis
Common Arterial Trunk

4-Chamber View
Common Arterial Trunk

4-Chamber View

5-Chamber View
Common Arterial Trunk

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Common Arterial Trunk

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Common Arterial Trunk

Dysplastic Valves of CAT

Insufficiency
Common Arterial Trunk

Valves of CAT
Common Arterial Trunk
Common Arterial Trunk
Common Arterial Trunk

3-Vessel Trachea View
Common Arterial Trunk

3-Vessel Trachea View
Common Arterial Trunk

GA=13w2d

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Common Arterial Trunk

3-D reconstructed plane in power Doppler
Common Arterial Trunk

Type 1 (A1)

AO
PA
CAT
RV
LV

3-D reconstructed plane in inverse mode
Common Arterial Trunk

Type A4 with IAA

3-D reconstructed plane in inverse mode
Common Arterial Trunk

Common Associated Cardiac Anomalies

- Absent DA in 50%
- When present, DA is patent postnatally in 70%
- Right Aortic Arch in 20-30%
- Interrupted Aortic Arch in 15%
- Absence of one of branch PA in 16%
- Variation in coronaries in 30%
Common Arterial Trunk

Associated Extracardiac Anomalies

- Common and seen in ~ 40% of CAT
- Numerical chromosomal anomalies in 4.5%
- 22q11 deletion in 30-40%
- Reported in diabetic mothers
Common Arterial Trunk

Differential Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>CAT type 1</th>
<th>TOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaligned ventricular</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>septal defect and aortic override</td>
<td>Markedly dilated</td>
<td>Present</td>
</tr>
<tr>
<td>Aortic root size</td>
<td>Arising from the common arterial trunk</td>
<td>Normal to dilated</td>
</tr>
<tr>
<td>Pulmonary trunk</td>
<td>No pulmonary trunk arising from ventricle</td>
<td>Narrow, separately arising from ventricle with patent pulmonary valve</td>
</tr>
<tr>
<td>Ductus arteriosus</td>
<td>Absent in 50%</td>
<td>Narrow, antegrade flow</td>
</tr>
<tr>
<td>Aortic valve/trunkal</td>
<td>Valve with one to six leaflets</td>
<td>Normal aortic valve</td>
</tr>
<tr>
<td>valve</td>
<td>Often dysplastic and insufficient</td>
<td>No regurgitation</td>
</tr>
<tr>
<td>Chromosomal aberrations</td>
<td>22q11 deletion in 30%-40%, other trisomies in 4%-5%</td>
<td>22q11 deletion in 10%-15%, other trisomies in 30%</td>
</tr>
<tr>
<td>Prognosis in postnatal isolated cases</td>
<td>Good</td>
<td>Good to excellent</td>
</tr>
<tr>
<td></td>
<td>Reoperations of pulmonary conduit required</td>
<td></td>
</tr>
</tbody>
</table>
Common Arterial Trunk

Outcome of Fetal Series

<table>
<thead>
<tr>
<th>Compiled data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td>87</td>
</tr>
<tr>
<td>Pregnancy termination (%)</td>
<td>34 (39%)</td>
</tr>
<tr>
<td>In utero deaths</td>
<td>4 (4.5%)</td>
</tr>
<tr>
<td>Live births</td>
<td>48 (55%)</td>
</tr>
<tr>
<td>Neonatal and infant deaths (%)</td>
<td>20 (23%)</td>
</tr>
<tr>
<td>Survival in all cases (%)</td>
<td>28 (32%)</td>
</tr>
<tr>
<td>Survival in continuing cases (%)</td>
<td>28/52 (53%)</td>
</tr>
<tr>
<td>Survival in all liveborns (%)</td>
<td>28/48 (58%)</td>
</tr>
</tbody>
</table>

Pediatr Cardiol 2009;30:256
Common Arterial Trunk

Outcome of Neonatal Series

Study involving 50 infants with CAT, operated on from 2 days to 6 months of age, Actuarial survival of 96% at 3 years was reported.

J Thorac Cardiovasc Surg 2000;119:508
Double Outlet RV

“DORV is a type of ventriculoarterial connection in which both great vessels arise either entirely or Predominantly from the right ventricle”

Congenital Heart Surgery Nomenclature and Database Project – Ann Thorac Surg 2000
Double Outlet RV

- Ventricular septal defect
- Great arteries arise from RV
- Varying relationship of great arteries

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Double Outlet RV

- Incidence ~ 1 – 1.5 % of newborns with CHD
- Occur in ~ 1 of 10,000 live births
- More common in fetuses of diabetic mothers
Double Outlet RV

- Spatial relationship of great arteries
- Location of VSD
- Presence of pulmonary & aortic stenosis

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Double Outlet RV

Spatial relationship of great arteries

<table>
<thead>
<tr>
<th>Relationships of great arteries in DORV</th>
<th>Description</th>
</tr>
</thead>
</table>
| Right posterior aorta to the pulmonary artery (tetralogy of Fallot-type DORV) | • Rare form of DORV
• Normal relationship of great arteries |
| Right anterior aorta to the pulmonary artery (D-transposition-type DORV) | • Second most common type of DORV
• VSD either subaortic or subpulmonary
• Subgroup called Taussig-Ring form of DORV |
| Left anterior aorta to the pulmonary artery (L-transposition-type DORV) | • Rare form of DORV
• Left course of the aorta in the thorax
• VSD either subaortic or subpulmonary |
| Right lateral aorta to the pulmonary artery (side by side) | • Most common form of DORV
• Aorta to the right of pulmonary artery
• Subaortic-type VSD is most common |

From Practical Guide to Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Double Outlet RV

Anatomic positions of VSD

<table>
<thead>
<tr>
<th>Anatomic positions of VSD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subaortic type</td>
<td>• VSD located closer to the aortic valve than the pulmonary valve</td>
</tr>
<tr>
<td></td>
<td>• Most common type</td>
</tr>
<tr>
<td>Subpulmonary type</td>
<td>• VSD located closer to the pulmonary valve than the aortic valve</td>
</tr>
<tr>
<td></td>
<td>• Typically supraventricular in location</td>
</tr>
<tr>
<td></td>
<td>• Second most common type</td>
</tr>
<tr>
<td>Subaortic and subpulmonary type (doubly committed)</td>
<td>• Large VSD</td>
</tr>
<tr>
<td></td>
<td>• VSD closely related to both semilunar valves</td>
</tr>
<tr>
<td></td>
<td>• Rare type</td>
</tr>
<tr>
<td>Remote type (nonrelated)</td>
<td>• VSD is distant from and nonrelated to both semilunar valves</td>
</tr>
</tbody>
</table>

From Practical Guide To Fetal Echocardiography – Abuhamad, Chaoui – 2nd Edition
Double Outlet RV
Double Outlet RV

Oblique plane (5-chamber and 3-VT)
Double Outlet RV

Oblique plane (short axis)
Double Outlet RV

Oblique plane (short axis)
Double Outlet RV

Oblique plane (5-chamber and 3-VT)
Double Outlet RV
Double Outlet RV

Oblique plane (14 weeks)
Double Outlet RV

3-D reconstructed plane in inverse mode
Double Outlet RV

Common Associated Cardiac Anomalies

- Pulmonary stenosis in 70%
- Mitral atresia
- Atrial septal defects
- Aortic stenosis
- Aortic coarctation
- Persistent LSVC
- Venous anomalies / heterotaxy
Double Outlet RV

Associated Chromosomal Anomalies

- Common, range of 12-40%
- Trisomy 18, 13 & 22q11
Double Outlet RV

Prognostic Factors

<table>
<thead>
<tr>
<th>Cardiac findings</th>
<th>Good prognosis</th>
<th>Poor prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic arch</td>
<td>Normal-sized aortic arch</td>
<td>Tubular aortic arch hypoplasia</td>
</tr>
<tr>
<td>Pulmonary artery</td>
<td>Patent pulmonary artery</td>
<td>Pulmonary atresia</td>
</tr>
<tr>
<td>Ventricle</td>
<td>Normal-sized ventricles</td>
<td>Hypoplastic left ventricle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single ventricle anatomy</td>
</tr>
<tr>
<td>Atrioventricular valve</td>
<td>Normal formed atrioventricular valves</td>
<td>Mitral atresia</td>
</tr>
<tr>
<td>anatomy</td>
<td></td>
<td>Atrioventricular septal defect</td>
</tr>
<tr>
<td>Situs</td>
<td>Normal situs</td>
<td>Situs ambiguous</td>
</tr>
</tbody>
</table>