Use of Ultrasound to Improve Care in Diabetes in Pregnancy

20TH ANNUAL OBGYN UPDATE FOR CLINICAL PRACTICE
LAGO MAR RESORT & CLUB
DECEMBER 8-11, 2011

HELEN FELTOVICH, MD MS
MATERNAL-FETAL MEDICINE
INTERMOUNTAIN HEALTHCARE
ADJUNCT ASSISTANT PROFESSOR
MEDICAL PHYSICS, OB/GYN
UNIVERSITY OF WISCONSIN & UNIVERSITY OF UTAH
What is diabetes?

...a melting down of the flesh and limbs into sweet urine” (Aretaeus of Cappadocia)
Ultrasound and Diabetes

Overview

- Prevalence
 - 10.8% of all women >19yo have diabetes
 - 12.6 million women (8 million of these are reproductive age)
 - Nearly half of these are undiagnosed
 - Pregestational: 1% of all pregnancies
 - Gestational: 2-5% of all pregnancies

National Diabetes Information Clearinghouse, 2011
ACOG Bulletin #60, 2005
Ultrasound and Diabetes

- Adverse outcomes: maternal
 - Nephropathy
 - Progression to end stage renal failure if cr >1.5mg/dL or proteinuria >3g
 - Preeclampsia 50%
 - Chronic hypertension (5-10% of all pregnant pregestational diabetics)
 - Preeclampsia develops in 10-25%
 - Exacerbations may cause end organ disease
 - Retinopathy
 - Progression may occur, especially with rapid glucose control
 - Coronary artery disease
 - Serious illness (eg MI) in patients with longstanding CAD and/or comorbidities
 - Neuropathy
 - Not well studied
 - DKA
 - Primary C/S

ACOG Bulletin #60, 2005
Ultrasound and Diabetes

Adverse outcomes: fetal

- **SAB**
 - 10-20% (pregestational)

- **Birth defects**
 - 5-10% (pregestational)
 - HgA1c
 - 5-6%: probably no increased risk (2-3%)
 - Values more than 1% above normal have increased risk
 - >10%: 20-25% anomaly risk
 - Usually cardiac or CNS (spina bifida, anencephaly, sacral agenesis)

- **Prematurity**
 - Spontaneous PTB
 - Iatrogenic PTB

- **Abnormal growth**
 - Fetal overgrowth (GDM)
 - Birth injury
 - Uteroplacental insufficiency
 - Growth restriction
 - IUFD
Ultrasound and Diabetes

- Adverse outcomes: neonatal/childhood/lifetime

 o **Neonatal**
 - RDS
 - Metabolic disturbances
 - Hypoglycemia
 - Hyperbilirubinemia
 - other
 - Polycythemia
 - Organomegaly

 o **Childhood/lifetime**
 - Obesity
 - Glucose intolerance/ type 2 diabetes
Ultrasound and Diabetes

• GDM Screening & Treatment

 ▪ Hyperglycemia and adverse pregnancy outcome
 • Associations are continuous with no obvious thresholds at which risk is increased: a consensus is needed to translate into clinical practice

 ▪ Benefit of treatment
Ultrasound and Diabetes

Role of ultrasound

- Establish accurate dating (early gestation)
- Screen for anomalies
- Monitor growth
- Antenatal testing
- Inform mode/timing of delivery

Vink, AJOG, 2006
Nizard, Sem Fetal Neonat Med, 2009
Ultrasound and Diabetes

- Monitor growth
 - Detection of macrosomia
 - Utility
 - Feasibility
Ultrasound and Diabetes

• Monitor growth

 o Utility & Feasibility

 o Shoulder dystocia cannot be predicted or prevented because accurate methods for identifying which fetuses will experience this complication do not exist.

ACOG, 2002
Ultrasound and Diabetes

- Monitor growth
 - Gregory, Obstet Gynecol 1998
 - 50% of dystocia in normal weight babies
 - Birth injuries happen in the absence of dystocia
 - No significant difference in overall birth injury in macrosomic v. non-macrosomic babies
 - Except brachial plexus injury
 - BUT, in normal weight babies, most brachial plexus injury occurs without dystocia

Table 4. Incidence Rates and Adjusted Relative Risks for Infant Complications of Shoulder Dystocia

<table>
<thead>
<tr>
<th>Complication</th>
<th>Macrosomic infants*</th>
<th>Normal weight infants†</th>
<th>Adjusted relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 712)</td>
<td>(n = 690)</td>
<td></td>
</tr>
<tr>
<td>Asphyxia</td>
<td>23</td>
<td>24</td>
<td>1.2 (0.6, 2.3)</td>
</tr>
<tr>
<td>Birth trauma</td>
<td>10</td>
<td>13</td>
<td>0.6 (0.2, 1.6)</td>
</tr>
<tr>
<td>Clavicular injury</td>
<td>42</td>
<td>34</td>
<td>1.3 (0.8, 2.1)</td>
</tr>
<tr>
<td>Facial palsy</td>
<td>2</td>
<td>3</td>
<td>2.2 (0.2, 44.4)</td>
</tr>
<tr>
<td>Long-bone injury</td>
<td>21</td>
<td>22</td>
<td>1.2 (0.6, 2.4)</td>
</tr>
<tr>
<td>Erb palsy</td>
<td>42</td>
<td>12</td>
<td>3.5 (1.8, 7.5)</td>
</tr>
<tr>
<td>Seizures</td>
<td>1</td>
<td>1</td>
<td>1.0 (0.0, 25.0)</td>
</tr>
</tbody>
</table>

* Macrosomic infants weighed at least 4000 g.
† Infants less than 4000 g.
Ultrasound and Diabetes

- **Monitor growth**
 - Macrosomic babies of diabetics are at higher risk than macrosomic babies of non-diabetics

 - Langer, AJOG, 1991
 - 75,000 deliveries (>1500 diabetics)
 - Diabetics: 3.2% dystocia
 - 84% weighed >4kg
 - Non-diabetics: 0.5% dystocia
 - 60% weighed >4kg
 - Similar rates of injury (asphyxia, fracture, seizures)
 - *3x higher dystocia rate in macrosomic babies of diabetic mothers than macrosomic babies of nondiabetic mothers*

 - Conway, AJOG, 1998
 - 2604 deliveries (all diabetic)
 - Overall 1.5-2.8% dystocia; 7.4% with birthweight >4kg
 - *3.6x higher rate if macrosomic*
Ultrasound and Diabetes

- Monitor growth
 - Accuracy of sonographic predictors of macrosomia
Ultrasound and Diabetes

• Monitor growth

- Improved prediction in diabetics?

 - Best, Obstet & Gynecol, 2002
 • 2023 pregnancies (1690 control, 133 diabetes)
 • 80/189 babies predicted >4kg had birthweights >4kg
 • 27/31 diabetics

 - Conway, AJOG, 1998
 • 2604 diabetic pregnancies
 • Ultrasound identified presence/absence of macrosomia in 87%
Monitor growth

Buchanan, Diabetes Care 1994 & 1998

- 303 GDM
 - AC <75%ile: diet
 - 24/171 LGA (14%)
 - AC ≥75%ile: diet
 - 9/24 LGA (38%)
 - AC ≥75%ile: randomized to diet
 - 13/29 LGA (45%)
 - AC ≥75%ile: randomized to insulin
 - 4/30 LGA (13%)

USN identified babies at higher risk for macrosomia in absence of glycemic criteria
Ultrasound and Diabetes

- Monitor growth

- Rossi, Acta Obstet Gynecol 2000
 - RCT
 - n=141
 - 73 had AC at 28w
 - 68 had AC at 32w

- Macrosomia reduced in babies identified at 28w (but not at 32w)
Ultrasound and Diabetes

- **Monitor growth**
 - **Kjos, Diabetes Care, 2001**
 - Randomized
 - 98 women (FBG 105-120)
 - Standard
 - Insulin, goal 90/120
 - Experimental
 - Insulin, goal 80/110
 - If AC >70%ile or any FPG >120

 - Birthweights, LGA, neonatal morbidity did not differ
 - 38% of Experimental group did not require insulin
 - Would have required in Study group
Ultrasound and Diabetes

- Monitor growth

- Schaefer-Graf, Diabetes Med, 2004
 - Randomized
 - 199 women
 - Standard: n=100
 - 30% received insulin
 - fasting >90/postprandial>120
 - Ultrasound-guided: n=99
 - 40% received insulin
 - AC >75%ile or fasting >120/postprandial>200

- 121 women (32 pregestational, 89 GDM)
 - AC >75th correlated to AF insulin >16
 - No cases of severe fetal hyperinsulinism with AC <75th
Ultrasound and Diabetes

• Monitor growth

- Bonomo, Diabetes Metab, 2004
 - Prospective
 - 229 gestational diabetics
 - Conventional: n=78
 - Goal 90/120
 - Insulin 16.7%
 - Modified: n=151
 - AC ≥75%ile: goal 80/100
 - AC <75%ile: goal 100/140
 - Insulin in 30.5%
• Monitor growth

- Fetal AC in 2nd & early 3rd trimester, repeated every 2-4w, can provide useful information to guide management

- Evidence reviewed from RCTs indicates that modification of metabolic management based on fetal growth measurements may improve perinatal outcome or at least be equivalent to standard intensified management.
 - Less intensified management may be allowed with normal growth (fetal abdominal circumference <75th percentile for gestational age), although the consensus was that some SMBG should be continued.

Fifth International Workshop-Conference on Gestational Diabetes Mellitus, Diabetes Care 2007; 30(2): S251-60
Ultrasound and Diabetes

- Monitor growth
 - Schaefer-Graf, Diab Care 2011
 - n = 1914 subjects (avg 2.3 per pregnancy)
 - 518 women with AC >90%ile
 - 74% dx with the first USN exam
 - 13% with the 2nd
 - ~86% of the fetuses were born non-LGA when AC was <90%ile at 24-27w and 28-32w (if both, 88%)
 - Predictive ability did not increase with more than 2 normal scans
 - Accuracy for predicting non-LGA
 - 90% (BMI >30)
 - 89.5% (hx macrosomia)
 - 95.2% (FBG >100)

| Table 3—Ability of an abdominal circumference measurement <90th percentile to predict a normally grown neonate depending on the gestational age at performance of the scan and the absence or presence of maternal risk factors for LGA birth weight |
|---|----------------|----------------|----------------|
| Gestational age at abdominal circumference <90th percentile | Total population | No maternal risk factor | With maternal risk factor |
| All US (n = 944 subjects) | 88.9 | 92.2 | 83.2* |
| 24-27 weeks (n = 313) | 85.9 | 90.0 | 81.0* |
| 28-31 weeks (n = 365) | 83.9 | 88.5 | 75.7* |
| 32-33 weeks (n = 97) | 87.9 | 92.5 | 81.0* |
| 36-38 weeks (n = 703) | 89.8 | 93.7 | 81.0* |
| In both, 24-27 and 28-32 weeks (n = 209) | 88.0 | 92.5 | 84.0* |

*Significantly different from percentage in pregnancies without maternal risk factors.

| Table 2—Independent risk factors for LGA birth weight in pregnancies with abdominal circumference <90th percentile at first ultrasound (n = 389 women with at least one risk factors of 1,443 subjects with maternal data) |
|---|----------------|----------------|
| | OR (95% CI) | P value |
| History of LGA newborn | 2.2 (1.2–3.9) | 0.004 |
| Pre-pregnancy BMI >30 kg/m² | 1.6 (1.04–2.5) | 0.032 |
| Mean fasting glucose at profile at entry >100 mg/dl (5.5 mmol/l) | 2.1 (1.2–3.3) | 0.003 |
Ultrasound and Diabetes

• Antepartum testing

 - Issues
 - No RCTs compare tests
 - The outcome is too rare
 - Most case series report good outcomes with a given testing protocol and conclude the protocol used is appropriate
 - High false-positive rates
 - Unnecessary interventions
 - No consensus regarding surveillance in GDM
 - Most authorities agree that women with GDM requiring insulin or glyburide, poor metabolic control, and/or cormorbid conditions undergo fetal surveillance.
 - The degree, if any, of excess perinatal mortality associated with mild GDM has not been established.

ACOG PRACTICE BULLETIN #30, 2001
Ultrasound and Diabetes

• **Antepartum testing**
 - Fetal kick counts
 - Nonstress test
 - Contraction stress test
 - Biophysical profile
 - Modified biophysical profile
 - Amniotic fluid index
Ultrasound and Diabetes

• Antepartum testing
 ○ Type & frequency of antenatal testing should be determined by the severity of maternal hyperglycemia or presence of other adverse clinical factors.
 ○ All women with GDM should monitor fetal movements during the last 8-10w of pregnancy
 ○ NSTs should be “considered” after 32 weeks’ gestation in women on insulin and “at or near” term in those who are diet controlled
 ○ BPP & Doppler to assess umbilical blood flow “may be considered” if there is excessive or poor growth

Fourth/Fifth International Workshop-Conference
Ultrasound and Diabetes

- Delivery
 - Mode
 - Timing
Ultrasound and Diabetes

- **Delivery: Mode**

- **C/S to avoid birth injury**
 - Crowther, NEJM, 2005
 - Number of C/S needed to prevent 1 brachial plexus injury: 34
 - Alsunnari, JOGC, 2005
 - Increase in C/S to prevent 10 dystocias out of 49 births if EFW >5kg: negligible
 - Conway, AJOG 1998
 - Increase in C/S rate using cutoff of 4250g in diabetics: 1%
 - Gregory, Obstet & Gynecol, 1998
 - C/S would not avoid all cases of shoulder dystocia or birth injury
 - Ecker, Obstet & Gynecol, 1997
 - Number of C/S to prevent 1 shoulder dystocia in non-diabetics: 19-162
 - Number of C/S to prevent 1 shoulder dystocia in diabetics: 5-48
 - Rouse, JAMA, 1996
 - Number of C/S needed to prevent 1 brachial plexus injury in non-diabetics: 2345
 - Number of C/S needed to prevent 1 brachial plexus injury (4.5kg) in diabetics: 443

- “Very difficult to find data that elective prelabor cesarean delivery at term is any riskier than vaginal delivery for the mother.”
 - Conway, Diab Care 2007
Ultrasound and Diabetes

- Delivery: Timing
 - No data to support induction for prevention of birth injury with suspected macrosomia
 - No data to support delivery before 38 weeks in absence of objective evidence of fetal compromise
Ultrasound and Diabetes

Conclusions

- Is ultrasound useful?
 - YES
 - Accurate dating (<20 weeks)
 - Anomaly screening (especially preexisting)
 - Avoidance of complications
 - Growth (~28 & ~34 weeks nominally enough)
 - Antenatal testing/AFI (twice weekly)
 - Delivery (related to growth)
Ultrasound and Diabetes

- Thank you!