Fetal Urinary Tract Abnormalities

24th Annual Ob-Gyn Ultrasound Update
December 6, 2015
Christina S. Han MD
UCLA Department of Ob-Gyn
Objectives

- Normal Fetal Urinary Tract
- Abnormals
 - Agenesis
 - Ectopic
 - Obstructive
 - Dysplasia
Normal GU Anatomy

• **Kidneys**
 – Timeline
 • 10-12 weeks: Visible
 • Size directly proportional to GA
 • 3rd trimester: Pyramids and cortex visibly separate

 – *Ultrasound appearance:*
 • Posterior, mid-abdomen
 • Flanks spine
 • Transverse, Sagittal, Coronal views
 • Capped by adrenals
Normal GU Anatomy

• Kidneys

![Graph showing kidney length vs. gestational age](image-url)
Normal GU Anatomy

• Kidneys @ 12 weeks
Normal GU Anatomy

- Kidneys @ 16 weeks

http://www.fetalultrasound.com/online/text/3-016.htm
Normal GU Anatomy

- Kidneys @ 20 weeks
Normal GU Anatomy

- Kidneys @ 28 weeks
Normal GU Anatomy

- Renal arteries
Normal GU Anatomy

• **Bladder**
 – Can be seen in 1st trimester

 – Ultrasound appearance:
 • Round/rectangular anechoic fluid-filled space in pelvis
 • Flanked by umbilical arteries
Normal GU Anatomy

- Bladder & 3VC
Normal GU Anatomy

- **Ureters**
 - Should not be visible in normal anatomy

- **Urethra**
 - Should not be visible in normal anatomy
Urinary Tract Abnormalities
Abnormal: Renal Agenesis

• Bilateral
 – 1-3 per 10,000
 – Lethal
 – Sporadic/isolated or part of syndrome
 – Recurrence risk: 3.5-5.9%

 – Ultrasound appearance:
 • Kidneys not identifiable
 • Color Dopplers do not reveal renal arteries (PPV 82%)
 • Adrenals “laying down”
 • Empty bladder (on prolonged or repeat examination)
 • Oligohydramnios after 16 weeks
Abnormal: Renal Agenesis
Abnormal: Renal Agenesis

• **Unilateral**
 – 3-4x more common than bilateral
 – Good prognosis

 – *Ultrasound appearance:*
 • Compensatory hypertrophy: AP:TR diameter ratio
 – Normal 2nd trimester: 0.84 (0.72-0.89)
 – Normal 3rd trimester: 0.81 (0.65-0.89)
 – Unilateral agenesis: \(\geq 0.9\) (high sensitivity/specificity)
 • Normal bladder
 • Normal AFV
Abnormal: Renal Agenesis
Abnormal: Renal Agenesis

- “Potter”
 - Edith Louise Potter, 1901-1993
 - Classic Potter Syndrome
 - Bilateral renal agenesis
 - Sequence
 - “Oligohydramnios sequence”
 - Physical appearance of a fetus/neonate due to persistent oligohydramnios
 - Clubbed feet, contractures, pulmonary hypoplasia, cranial anomalies, low-set ears, flattened nose/face, micrognathia, IUGR
Abnormal: Renal Agenesis

• “Potter”

 – Ultrasound findings
 • LIMBS: Clubbed feet, contractures
 • THORAX: pulmonary hypoplasia
 • HEAD/NECK:
 – Cranial abnormalities
 – Low-set ears
 – Flattened nose/face
 – Micrognathia
 – IUGR
Abnormal: Ectopic Kidney

- 1:7000 births
- Locations:
 - Pelvis: most common
 - Crossed renal ectopia
Abnormal: Ectopic Kidney

• Pelvic
Abnormal: Ectopic Kidney

- Pelvic

Fusion point of Lt + Rt kidneys

Crossed fused renal ectopia
Abnormal: Ectopic Kidney

- Thoracic
Abnormal: Obstructive

- **Obstructive uropathies**
 - Portion or entire urinary tract
 - Terminology
 - Hydronephrosis: abnormal dilation of renal pelvis and calyces
 - Pyelectasis: abnormal dilation of pelvis only
 - Sites:
 - Ureteropelvic junction (most common)
 - Urethra
 - Ureterovesical junction
 - Male > Female (3:1)
Abnormal: Obstructive

• Pyelectasis / Hydronephrosis
Abnormal: Obstructive

- Pyelectasis
 - Demographics
 - Male > Female (3:1)
 - Left > Right
 - GA dependent

<table>
<thead>
<tr>
<th>GA</th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20 w</td>
<td><4 mm</td>
<td>4-7 mm</td>
<td>>7 mm</td>
<td></td>
</tr>
<tr>
<td>20-30 w</td>
<td><5 mm</td>
<td>5-8 mm</td>
<td>9-15 mm</td>
<td>> 15 mm</td>
</tr>
<tr>
<td>>30 w</td>
<td>< 7 mm</td>
<td>7-9 mm</td>
<td>10-15 mm</td>
<td>>16 mm</td>
</tr>
</tbody>
</table>

- Outcomes similar between sexes

Mandel, 1990; Society of Fetal Urology
Abnormal: Obstructive

- Pyelectasis / Hydronephrosis Outcomes

- 11,465 women @ 18-23 weeks
- 2.3% with hydronephrosis
 - 80.6% Mild
 - None required surgery
 - 19.4% Mod-Severe
 - 1 in 3 required surgery
Abnormal: Obstructive

• Pyelectasis / Hydronephrosis Evaluation
 – Association with T21
 • 9.1% of T21 with some pyelectasis
 • Isolated pyelectasis = LR 1.5-3.8
 • Pyelectasis + other anomalies = LR 19.2
 • Compared to all other organ systems, lowest correlation with T21
 – Recurrence risk
 • RR 6.1
Abnormal: Obstructive

- Pyelectasis / Hydronephrosis
Abnormal: Obstructive

- Pyelectasis / Hydronephrosis
Abnormal: **Obstructive**

- **Pyelectasis / Hydronephrosis**
Abnormal: Obstructive

- Pyelectasis / Hydronephrosis
 Postnatal follow-up

 - US @ Birth
 - If severe, VCUG at 2-4 weeks

 - US @ 1 month

 - Serial US and UTI surveillance q 6-12 months
Abnormal: Obstructive

- **Ureteropelvic Junction Obstruction (UPJO)**
Abnormal: Obstructive

• UPJO
 – Most common cause of neonatal hydronephrosis
 – 50% of congenital urinary tract abnormalities
 – Cause: Kinks, bands, fibrous adhesions, ureteral valves, abnormal insertion, unusual shapes of pyeloureteral outlet
 – 10-30% bilateral
 – M>F (5:1)
 – Sporadic, but may be familial
Abnormal: Obstructive

• **UPJO**
 - Associated anomalies:
 • MCDK
 • Cardiovascular
 • NTD
 • Hirschsprung
 • Imperforate anus
 • Esophageal atresia
 - Amniotic fluid
 • Oligohydramnios if severe and bilateral
 • Paradoxical polyhydramnios
Abnormal: Obstructive

- UPJO
Abnormal: Obstructive

• UPJO
Abnormal: Obstructive

- Ureterovesical Junction Obstruction (UVJO)
Abnormal: Obstructive

- **UVJO**
 - “Megaureter” or “Hydroureter”
 - Causes: Ureteral stenosis, fibrosis, abnormal muscularis, external compression, duplicated collecting system, ectopic ureterocele
 - M>F
 - Sporadic, but may be familial

- Ultrasound appearance:
 - Tortuous, anechoic, tubular structure traced from origin in renal pelvis to urinary bladder
Abnormal: Obstructive

- Hydroureter
Abnormal: Obstructive

- UVJO
 - Associated anomalies:
 - Ureterocele
 - Contralateral agenesis
 - Multicystic kidney disease
 - Hirschsprung disease
Abnormal: Obstructive

- Ureterocele

https://iame.com/online/fetal_uropathy/content.php
Abnormal: Obstructive

- Posterior Urethral Valves (PUV)
Abnormal: Obstructive

• **PUV**
 – Most common cause of distal urinary tract obstruction

 – *Ultrasound findings:*
 • Marked distension & hypertrophy of bladder
 • Keyhole sign
 • ± Hydronephrosis & hydroureter (bilateral)
 • ± Oligohydramnios
 • ± Renal dysplasia
Abnormal: Obstructive

- PUV

- *Megacystis:*
 - **Normal:** Bladder length > 7 mm before < 10 weeks
 - **Intermediate:** Bladder length at 7-15 mm
 - Spontaneous resolution in 90% by 20 weeks
 - **Severe:** Bladder length > 15 mm
 - Progressive obstructive uropathy
Abnormal: Obstructive

- PUV
Abnormal: Obstructive

• PUV
Abnormal: Obstructive

• PUV
Abnormal: Obstructive

• PUV
Abnormal: Obstructive

- PUV
Abnormal: Obstructive

• PUV
 – Associated anomalies (20-25%)
 • Cardiovascular anomalies
 • Tracheal hypoplasia
 • Scoliosis
 • Imperforate anus
Abnormal: Obstructive

- Urethral atresia
 - Ultrasound findings:
 - Similar to posterior urethral valve initially
 - Anhydramnios
 - Pulmonary hypoplasia
Abnormal: **Cystic Disease**

- **Potter Types**
 - *Type I*:
 - Autosomal recessive (infantile) polycystic kidney disease (AR-PKD)
 - *Type II*:
 - MCDK disease
 - *Type III*:
 - Autosomal dominant (adult) polycystic kidney disease (AD-PKD)
 - *Type IV*:
 - Renal dysplasia

Dighe, et al. 2011
Abnormal: Cystic Disease

• Potter Types
 – *Type I*: AR-PKD
 • Chromosome 6p
 • Abnormal collecting tubules
 • Associated anomalies:
 – Hepatic cysts
 – Biliary duct hyperplasia
 – Portal hypertension

Dighe, et al. 2011
Abnormal: Cystic Disease

- Potter Types
 - *Type I*: AR-PKD
 - Types
 - Perinatal: Most common
 - Renal failure in-utero
 - Stillbirth or Neonatal death
 - Neonatal
 - Infantile
 - Juvenile

Dighe, et al. 2011
Abnormal: Cystic Disease

- **Potter Types**
 - *Type I:* AR-PKD

 - *Ultrasound findings*
 - 1-2 mm cysts at periphery
 - Renal pelvis, calyces, ureters normal
 - Bilaterally enlarged kidneys
 - Hyperechoic
 - Oligohydramnios
 - Small bladder

Dighe, et al. 2011
Abnormal: Cystic Disease

- Potter Types
 - *Type I*: AR-PKD

Dighe, et al. 2011
Abnormal: Cystic Disease

• Potter Types
 – Type II: MCDK
 • Most common type leading to ESRD in children
 • Sporadic
 • Laterality
 – Bilateral: 20%
 – Unilateral: 80% with contralateral anomalies in 40%
 – Segmental
 • Subcategories
 – IIA = Large kidneys
 – IIB = Small or normal kidneys

Dighe, et al. 2011
Abnormal: Cystic Disease

- Potter Types
 - *Type II*: MCDK

Ultrasound findings:
- No normal parenchyma
- Normal, small, or large size
- Cysts = Dilated collecting tubules
- No communication between enlarged tubules
- Renal artery small or absent

Dighe, et al. 2011
Abnormal: Cystic Disease

- Potter Types
 - Type II: MCDK
Abnormal: Cystic Disease

• Potter Types
 – Type II: MCDK
 • Meckel-Gruber
Abnormal: Cystic Disease

• Potter Types
 – *Type II*: MCDK
 • Associated anomalies:
 – GU: Atretic ureter, Pelvoinfundibular atresia,
 – CV: Cardiovascular anomalies
 – GI anomalies, CDH
 – Face: Cleft
 – MSk: absence of radius, thumbs
 – NTD, microcephaly
 – Meckel-Gruber syndrome (AR)
 – Apert syndrome (AD)

• Hypertension

Dighe, et al. 2011
Abnormal: Cystic Disease

- **Potter Types**
 - *Type III: AD-PKD*
 - Most common form of hereditary renal cystic disease
 - PKD1 gene (chr 16p) and PKD2 gene (4q)
 - Can be present in fetal or neonatal period
 - **Ultrasound findings:**
 - Symmetrically enlarged
 - Echogenic
 - Small cysts
 - Bladder & AFV normal
 - Associated anomalies: Cysts elsewhere (liver, pancreas, spleen, CNS)
 - Family History; US of parents’ kidneys

Dighe, et al. 2011
Abnormal: Cystic Disease

• Potter Types
 – Type IV: Cystic Renal Dysplasia
 • Sequelae of obstructive uropathy
 • Degree of dysplasia correlates with obstruction
 • Hard to distinguish from MCDK
 • Poor prognostic factors:
 – Urinomas
 – Ascites
 – Oligohydramnios

Dighe, et al. 2011; Mandel, 1990; Society of Fetal Urology
Abnormal: Dysplasia

- Potter Types
 - Type IV: Cystic Renal Dysplasia

- Ultrasound findings predictive of dysplasia

<table>
<thead>
<tr>
<th></th>
<th>Sens</th>
<th>Spec</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical cysts</td>
<td>44%</td>
<td>100%</td>
<td>100%</td>
<td>56%</td>
</tr>
<tr>
<td>Echogenic kidneys</td>
<td>74%</td>
<td>80%</td>
<td>89%</td>
<td>57%</td>
</tr>
</tbody>
</table>
Abnormal: Dysplasia

- **Potter Types**
 - *Type IV: Cystic Renal Dysplasia*
 - **Biochemical findings**

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td><100 mEq/L</td>
<td>>100</td>
</tr>
<tr>
<td>Cl⁻</td>
<td><90 mEq/L</td>
<td>>90</td>
</tr>
<tr>
<td>Ca++</td>
<td>8 mg/dL</td>
<td>>8</td>
</tr>
<tr>
<td>Osm</td>
<td>200-210 mOsm/L</td>
<td>$>200-210$</td>
</tr>
<tr>
<td>B₂-microglobulin</td>
<td><4 mg/dL</td>
<td>$>6-10$</td>
</tr>
<tr>
<td>Protein</td>
<td><40 mg/dL</td>
<td>>40 mg/dL</td>
</tr>
</tbody>
</table>

Mandel, 1990; Society of Fetal Urology
Conclusions

- Understand normal embryology and fetal development
- Evaluate entire urinary tract
- Look for associated anomalies
- Genetics consultation and family history
Questions?